

1 R = Me

2 R = H

yielded 30 mg colourless needles, mp 95°, [TLC, R_f 0.54, *n*-hexane-ethylacetate (19:1)], UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε) 294 (4.5), IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹ 1660, 1628, 1590, 1230, 965, 940, ¹H NMR (90 MHz, CDCl₃, TMS int stand) δ 1.90 (d, $J = 8.0$ Hz, 3H-1), δ 6.72 (q, $J = 15.90$ Hz, 1H-2), δ 6.48 (d, $J = 16.0$ Hz, 1H-3) δ 6.14 (s, 2H-3',5'), δ 3.76 (s, 6H, MeO-2' and MeO-6'), δ 3.84 (s, 3H, MeO-6', EIMS (probe) m/z (rel int) 236 (M⁺) (80), 221 (35), 206 (20), 195 (100), 181 (20), 167 (45), 69 (30) ¹³C NMR (50 MHz, CDCl₃, TMS int standard) see Table 1.

Verticilone 2 [But-2-en-4(2'-hydroxy-4',6'-dimethoxyphenyl)-one] The crude verticilone was recrystallized to homogeneity from *n*-hexane [TLC, 0.81, *n*-hexane-EtOAc (19:1)] (20 mg), yellow needles, mp 79°, UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε) 296 (4.25), UV $\lambda_{\text{max}}^{\text{EtOH}+\text{NaOH}}$ nm 296, 310 (infl), IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3450, 1655, 1630, 1590, 1210, 1120, 1060, 960, ¹H NMR (90 MHz, CDCl₃, TMS int stand) δ 1.93 (d, $J = 7.8$ Hz, 3H-1), δ 6.75 (q, $J = 16.0$ Hz, 1H-2) δ 6.51 (d, $J = 16.0$ Hz, 1H-3), δ 6.17 (d, $J = 3.0$ Hz, 1H-3'),

δ 6.20 (d, $J = 3.0$ Hz, 1H-5'), δ 3.90 (s, 3H, MeO-4'), δ 3.83 (s, 3H, MeO-6'), δ 12.20 (br s, 1H, disappeared on D₂O exchange), EIMS (probe) m/z (rel int) 222 (M⁺) (75), 207 (25), 192 (20), 181 (100), 153 (40), 69 (30), ¹³C NMR (50 MHz, CDCl₃, TMS int standard), see Table 1

Methylation of 2 to 1 Verticilone 2 (10 mg) in ethereal solution (15 ml) was methylated with diazomethane in the usual way. On removal of the solvent and chromatography over alumina yielded a colourless compound which after recrystallization from *n*-hexane-benzene (1:1) yielded vertinone 1 (6 mg) was identified by mmp, IR and UV

Acknowledgement—We thank Prof B B Biswas (Director of Bose Institute) and Prof P Chakrabarti (Chair-Person of the Department of Chemistry) for their interest. Thanks are also due to Mr Kamal Chakraborty and Mr N K Das for experimental assistance

REFERENCES

- 1 McClure, J W (1970) in *Phytochemical Phylogeny*, (Harborne, J B, ed), p 233 Academic Press, London
- 2 Morton, R A and Sawires, Z (1940) *J Chem Soc*, 1052
- 3 Morton, R A and Stubbs, A L (1940) *J Chem Soc*, 1347

ARYLNAPHTHALENE LIGNAN FROM *JATROPHA GOSSYPIFOLIA*

B DAS and J. BANERJI*

Department of Chemistry, University College of Science, 92, A P C Road, Calcutta 700009, India

(Received 29 March 1988)

Key Word Index—*Jatropha gossypifolia*, Euphorbiaceae, arylnaphthalene lignan, 2,3-bis(hydroxymethyl)-6,7-methylenedioxy-1-(3',4'-dimethoxyphenyl)-naphthalene

Abstract—2,3-Bis(hydroxymethyl)-6,7-methylenedioxy-1-(3',4'-dimethoxyphenyl)-naphthalene has been isolated from *Jatropha gossypifolia*. This is the first report of the isolation of this arylnaphthalene lignan from a natural source.

INTRODUCTION

In continuation of our work [1-5] on the lignan constituents of *Jatropha gossypifolia*, we report the isolation of 2,3-bis(hydroxymethyl)-6,7-methylenedioxy-1-(3',4'-dimethoxyphenyl)-naphthalene from the petrol extract of the plant. This arylnaphthalene lignan has not previously been encountered in nature.

RESULT AND DISCUSSION

2,3-Bis(hydroxymethyl)-6,7-methylenedioxy-1-(3',4'-dimethoxyphenyl) naphthalene (1), C₂₁H₂₀O₆ ([M]⁺ m/z 368), mp 184°, was isolated as colourless needles. The UV spectrum of 1 with $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε) 247 (4.74), 290 (3.92) and 332 (3.43) was consistent with an 1-arylnaphthalene lignan system [6] while the IR spectrum showed the

presence of an hydroxyl group (3420 cm^{-1}). In the $300\text{ MHz}^1\text{H}$ NMR spectrum of **1** in CDCl_3 the aromatic region clearly showed the presence of two types of aromatic nuclei. The two singlets at $\delta 7.06$ (1H , *s*, H-5) and 6.69 (1H , *s*, H-8) confirmed the presence of two *para* protons while an ABX system was evident from the signals at $\delta 6.78$ (1H , *d*, $J=2\text{ Hz}$, H-2'), 6.86 (1H , *dd*, $J=8$ and 2 Hz , H-6') and 6.85 (1H , *d*, $J=8\text{ Hz}$, H-5'). Two hydroxyls appeared as broad signals at $\delta 3.05$ (exchangeable with D_2O) The methylene protons at C-2 α and C-3 α resonated comparatively downfield at $\delta 4.55$ (2H , *s*) and 4.85 (2H , *s*) indicating their association with the hydroxyls as $-\text{CH}_2\text{OH}$ One methylenedioxy appeared at $\delta 5.93$ (2H , *s*) and two methoxyl signals at $\delta 3.90$ and 3.78 (3H , *s* each). The methylenedioxy group was reasonably placed in ring A at C-6, C-7 and the two methoxyls in ring C at C-3' and C-4'. The alternative location of the substituents in the aromatic rings was ruled out on the basis of the observation [7] that $\Delta\delta$ for A-ring methoxyls would be $>0.2\text{ ppm}$. The substitution pattern was further confirmed from the mass spectral analysis of **1** which showed the presence of the dimethoxyphenyl fragment ion at m/z 137. This was obviously obtained by fragmentation [8] of ring C of the lignan. Other important peaks in the mass spectrum were observed at m/z 368 [$\text{M}]^+$, 353 [$\text{M}-\text{Me}]^+$, 350 [$\text{M}-\text{H}_2\text{O}]^+$, 339 [$\text{M}-\text{CHO}]^+$, 338 [$\text{M}-\text{CH}_2\text{O}]^+$, 321 [$\text{M}-\text{H}_2\text{O}-\text{CHO}]^+$, 320 [$\text{M}-\text{H}_2\text{O}-\text{CH}_2\text{O}]^+$, 231 [$\text{M}-\text{C}_8\text{H}_9\text{O}_2]^{+}$ and 216 [$\text{M}-\text{C}_8\text{H}_9\text{O}_2-\text{H}_2\text{O}]^{+}$

The structure of **1** was unambiguously assigned from the study of its $75\text{ MHz}^{13}\text{C}$ NMR spectrum in CDCl_3 (Table 1). The signals were assigned from the DEPT experiment and the data compared with the reported values [9] of the corresponding signals of known aryl naphthalene lignans.

Although lignan **1** has previously been reported as an intermediate [10–11] in the synthesis of chinensis and retrochinensis no data were available on this compound. This is the first report of the natural occurrence of **1** and a detailed study of both its ^1H and ^{13}C NMR data. As the compound was present in the original petrol extract of *J. gossypifolia* (indicated from TLC) it is unlikely to be an artefact.

EXPERIMENTAL

Mp. uncorr Specific rotation was measured in CHCl_3 , UV spectra in EtOH and IR spectra in KBr ^1H NMR spectra at 300 MHz was recorded in CDCl_3 using TMS as int. std, ^{13}C NMR spectra at 75 MHz in CDCl_3 . The MS was determined at 75 eV

Plant material. Seeds, roots and stem of *J. gossypifolia* L. were collected from Nadia District, West Bengal, India. Voucher specimens, JG (Se), JG (r) and JG (st), have been preserved in our laboratory

Isolation of 2,3-bis(hydroxymethyl)-6,7-methylenedioxy-1-(3',4'-dimethoxyphenyl)-naphthalene (1) Air-dried and finely milled stems, roots and seeds (30 kg) of *J. gossypifolia* were exhaustively extd with petrol (60 – 80°) in a Soxhlet apparatus for 72 hr . The ext was concd and chromatographed over silica gel, the column being eluted with solvents of increasing polarity. The EtOAc eluate afforded **1** which was crystallized from petrol- C_6H_6 , mp 184° , yield 6 mg (Found. C, 68.62; H, 5.32. $\text{C}_{21}\text{H}_{20}\text{O}_6$ requires. C, 68.46; H, 5.43%), IR $\nu_{\text{max}}^{\text{KBr}}\text{ cm}^{-1}$ 3420, 1628, 1605, 1505, 1255, 1180, 1025, 945

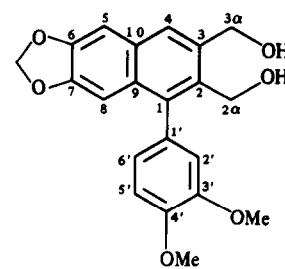

Acknowledgements—The authors express their sincere thanks to A. K Acharya, J. Ghosh and P Ghosh of the Organic Instrumentation Laboratory, Department of Chemistry, Calcutta University for recording the spectra and to UGC, New Delhi, for financial assistance.

Table 1. ^{13}C NMR spectral data of lignan **1** (75 MHz , CDCl_3)

C	Chemical shift (δ in ppm)
1	135.76
2	131.33
2 α	60.71
3	139.73
3 α	65.25
4	127.85
5	103.63
6	147.96
7	147.71
8	102.47
9	130.00
10	133.33
1'	130.02
2'	113.31
3'	148.82
4'	148.38
5'	111.02
6'	122.27
$-\text{OCH}_2\text{O}$	101.05
$-\text{OMe}$	55.89

REFERENCES

1. Chatterjee, A., Das, B., Pascard, C and Prangé, T (1981) *Phytochemistry* **20**, 2047.
2. Banerji, J., Das, B., Chatterjee, A. and Shoolery, J. N. (1984) *Phytochemistry* **23**, 2323.
3. Banerji, J. and Das, B. (1985) *Heterocycles* **23**, 661.

- 4 Banerji, J, Das, B and Shoolery, J N (1987) *Indian J Chem* **26B**, 972
- 5 Chatterjee, A, Das, B, Chakrabarti, R, Bose, P, Banerji, J, Banerji, A and Budzikiewicz, H (1988) *Indian J Chem* (in press)
- 6 King, F E and Wilson, J G (1964) *J Chem Soc* 4011
- 7 Stevenson, R and Holmes, T L (1971) *J Org Chem* **36**, 3450
- 8 Okigawa, M, Maeda, T and Kawano, N (1970) *Tetrahedron* **26**, 4301
- 9 Abdullaev, N D, Yadudaev, M R, Baturov, E K and Malikov, V M (1987) *Khim Prir Soedin* **76**
- 10 Anjaneyulu, A S R, Umasundari, P and Sastry, Ch V M (1986) *Indian J Chem* **25B**, 955
- 11 Anjaneyulu, A S R, Umasundari, P, Sastry, Ch V M and Satyanarayana, P (1986) *Indian J Chem* **25B**, 589

Phytochemistry, Vol 27, No 11, pp 3686-3687, 1988
Printed in Great Britain

0031 9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc

A PHENOL FROM THE BROWN ALGA *PERITHALIA CAUDATA*

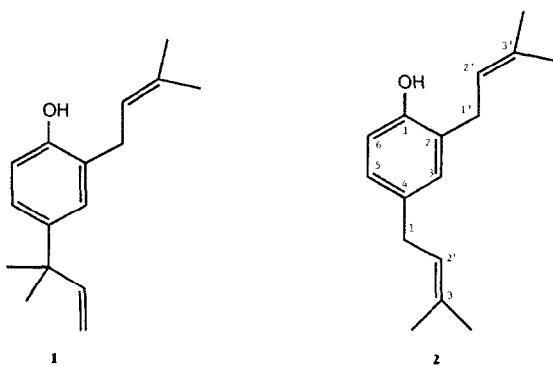
ADRIAN J BLACKMAN,* GLEN I. ROGERS and JOHN K VOLKMAN

Chemistry Department, University of Tasmania, GPO Box 252C, Hobart, Tasmania, 7001, Australia, CSIRO Division of Oceanography, Marine Laboratories, GPO Box 1538, Hobart, Tasmania, 7001, Australia

(Received 16 February 1988)

Key Word Index—*Perithalia caudata*, Phaeophyta, Sporochnaceae, phenol, 2,4-bis(3-methylbut-2-enyl)phenol

Abstract—The diprenylated phenol 2,4-bis(3-methylbut-2-enyl)phenol as well as the previously described isomeric 4-(1,1-dimethylprop-2-enyl)-2-(3-methylbut-2-enyl)phenol have been isolated from the brown alga *Perithalia caudata*. The relative proportions of these two phenols varies considerably between individual plants.


INTRODUCTION

In an earlier paper we reported that the main secondary metabolite from *Perithalia caudata* (Lab.), a brown seaweed (order Sporochnales) which is common around the coast of southern Australia, was 4-(1,1-dimethylprop-2-enyl)-2-(3-methylbut-2-enyl)phenol (**1**), a diprenylphenol containing a 'reverse' isoprene unit at the 4-position as well as a 'normal' unit at the 2-position [1]. The phenol was isolated from a combined collection of the alga. A number of plants had been collected, combined and processed to give an oil (1.8% dry weight) consisting of a mixture of **1** (90%) and a second component (9%), which at the time could not be separated. This second component has now been obtained pure and identified as 2,4-bis(3-methylbut-2-enyl)phenol (**2**).

RESULTS AND DISCUSSION

Analysis of individual plants, collected at the same location as those in the previous study, has now revealed that there is a considerable variation in the distribution of compounds **1** and **2** in *Perithalia caudata*. Five plants were freeze-dried and powdered. Representative samples of each were analysed by GC-MS; relative amounts of **1** and **2**, based on total ion chromatogram measurements, varied from 7.3:1 to 0.37:1. No other isomeric phenols were detected. The plant extract richest in the second component was subjected to preparative gas chromato-

graphy allowing **2** to be obtained in a pure state. The molecular formula of **2** was established as $C_{16}H_{22}O$ by high resolution mass spectroscopy, showing that **2** was isomeric with **1**. The low field region of the 1H NMR spectrum of **2** was quite similar to that of **1**; the three aromatic protons formed an ABX system revealing that **2** was also a 2,4-disubstituted phenol. Differences in the rest of the spectrum indicated that the substituents were two nonequivalent 3-methylbut-2-enyl groups, so both of the isoprene units were attached in the normal manner rather than one of them being reversed as in **1**. This is the first report of **2** as a natural product although it has previously been synthesized [2, 3].

